
more at formant.io

The following diagram depicts a classic implementation we see. It

leverages a VPN to provide a private network.

This design is what’s known as a crunchy outer shell or perimeter-based

security. While making it easy to have robot applications and other cloud

APIs communicate easily within a private network, the security of this

design is immediately in jeopardy when any VPN key is compromised, or

when an attacker gains access behind the perimeter defense. Can you

imagine an attacker getting into your VPN and connecting to any robot’s

ROS Master? We also generally see non-encrypted traffic between services

and robots, such as APIs running on http and not https.

Notwithstanding the security concerns (in some cases, they are a powerful

tool to debug and access your robot fleet), VPNs are hard to manage. You

need to configure rules governing key expiration and key rotation. VPN logs

need to be made available for audits (to check for anomalous access).

Formant security

Traditional

Speak to an expert formant.io/get-started

At Formant we treat security as a first-class feature, and evaluate all engineering decisions and implementations with the

security of our stack and our customers data in mind. Security is a feature of our product that is constantly being improved

due to the fast-paced nature of the field and the feedback we have from our customers.

The security of our platform covers data transport and storage, user/robot authentication and authorization, network

protocols, and API design. This first post will cover how we secure end-to-end encryption and identity throughout our stack.

Security by design

At Formant we take a modern, cloud-native approach to security — an

approach that provides end-to-end encryption and identity across all

robots, networks, operators and APIs. The diagram below depicts the

Formant security model.

The Formant security model is built on cloud native principles such as

zero-trust authentication and and scoped permissions for devices, users,

and services. We also follow best practices for edge deployed software

(the Formant Agent) and our cloud web application and backend APIs.

Security is baked into our architecture and peer review processes as well,

including regular reviews and tests of the infrastructure, web application,

and API layers.

End-to-end

Traditional

End-to-end

https://formant.io/
https://formant.io/get-started/

Starting with the robot, the Formant Agent uses a one-time, short-lived

provisioning token to generate the Robot Private Key. This private key is

never sent to the cloud. The corresponding Robot Public Key is used to

provision the robot and is stored on our backend to verify signed  

requests from robots.

Provisioning tokens
Many applications deployed to public clouds will be happy enough 

with TLS termination at the load balancer and HTTP (plain text) traffic

behind it. Formant’s cloud employs mutual TLS to ensure encrypted  

traffic everywhere — between the ingress controller and APIs,  

as well as between APIs.

We leverage several technologies to achieve this. First, our APIs are  

running within a Kubernetes cluster, which allows us to deploy Istio,  

an open, platform-independent service mesh that provides traffic

management, policy enforcement, and telemetry collection. Within this

service mesh, we enable mutual TLS, a feature of Istio that allows us to

encrypt all traffic between the ingress controller and APIs, as well as

between APIs. The service mesh also allows us to employ a second layer  

of defense against misbehaving applications or bad actors with layer 7

(application networking layer) policy rules.

TLS end-to-end

Our first layer of security is our public-facing load balancer. Attached to the

load balancer is a Web Application Firewall that provides protection against

DDOS, blacklists bad IPs, and enforces other security based rules. We also

run our entire API layer in private subnets ensuring no external access to

any of our cloud compute instances or databases.

Load balancers, WAFs, and
public vs. private subnets

For distributed on-site LANs where the Formant Agent may be running on a

separate host we support an advanced feature to encrypt gRPC traffic

between a Robot Application and the Formant Agent. In most cases we see

the Robot Application running on the same host as the Formant Agent in

which case plain text traffic is acceptable, however we do encourage our

security-conscious customers to consider using this feature.

Customizations for LANs:
encryption via gRPC

At the application layer, we authenticate and authorize every API call with

the client’s robot, user, or service identity. This design stands in contrast to

an "API token" pattern that supports anonymous clients. The identity

associated with every API call in the Formant system allows us to support

fine-grained access control, permission revocation, and auditing. For

additional protection, we ensure that robot and user private keys are never

sent on the wire. Service tokens within our backend rely on symmetric

encryption and rotate frequently.

An important implementation detail is how a robot, user, or service proves

their identity. For each of these API calls we leverage JSON Web Tokens 

to prove the identity of the caller. These are short-lived tokens which are

industry standard in modern cloud applications. It allows us to never need  

to send a permanent private key across the wire.

Enforcing identity of robots,
users, and services

Designing for security is a key tenet in our engineering process. Something we’ve often observed is treating security as a

"bolt-on" feature. Many times these efforts end in application security designs that leave security holes (i.e. crunchy outer

shell design or permanent API keys). If you are thinking about improving your robot security model or thinking of an audit,  

we can help. Please get in touch with an expert on our services team to get started.

Ask an expert

Speak to an expert formant.io/get-started

https://formant.io/get-started/

